
'PW F IL E C O P Y
A x IV~

REPORT DOCUMENTATION PAGE M.074W
sqi=n1 odu b ~la-" b 60I W m1 s iwwe" I s." m me"B' lb Gomm~q q

1. AGENCY USE ONL.Y (LW RAW) REPORT DAT REPOR TYPE AND DTES COVEEDJ I Final 27 Oct. 1989 to 27 Oct. 1990

4.Tf.ENDUUTffl.E Ada Compiler Validation Summary Report: DDC ME

INTERN'ATIONAL A/S, DACS for Sun-3-S Lynwood/LynX, Version 4.4
(1.1), SUN-3/50 Workstation (Host) to Lynwood j430 (Target),
891027SI-10184

&AUTHOR(S)

National Institute of Standards and Technology
C'J Gaithersburg, MD
S USA

7.PMOM ORGAIZIZON NAM(S) AM ADORESES) s. PEFRIGOGNZTO
S National Institute of Standards and Technology
S National Computer Systems Laboratory

Bldg. 255, Rmn. A266
Gaithersburg, MD 20899

0. SPONSOR.. fFO1N .. ~AGENCYWAhE(S) AM ADDRESS(ES) 10. 5PORSORING4UNTORHG AGENCY

Ada Joint Program Office RPR UB

United States Department of Defense
Washington, D.C. 20301-3081

11. SUPPLEhNTARY NOTES

12L. OtSTRBUTOAVALA3LITY STATEbENT i2W. OISTRUION CODE

Approved for public release; ditibution unlimited.

13. ABSTRACT (Amhan2 wad)

DDC INTERNATIONAL A/S, DACS for Sun-3 - Lynwood/LvnX, Version 4.4 (1.1), Gaithersburg
MD, SUNY-3/50 Workstation under SunOS UNIX, Version 4.2, Release 4.0_EXPORT (Host) to
Lynwood j430 under LynX, Version 1.4F (Target), ACVC 1.10.

14SUL5ECTTENG Ada programming language, Ada Compiler Validation is. NIERF PAWES

Summary Report, Ada Compiler Validation Capability, Validation
Testing, Ada Validation Office, Ada Validation Facility, ANSI/MIL- iPRICEOE

SJR181A, daJoint Pogram Office
17.U WCfIslECRY CLAWSCAT04 19. SECUPITY C1 AS5FICATI 25. URTFATEN OF ABSTRACT

OF RT AI OF ABSTPD
UNCLASSIFIED INMIE jUNCLACSIFIED

NSN~~~2 115. 43-6
- ._j t 0% 0

AVF Control Number: NIST89DDC580 2 1.10
DATE COMPLETED BEFORE ON-SITE: 10-02-89
DATE COMPLETED AFTER ON-SITE: 12-04-89

Ada Compiler Validation Summary Report:

Compiler Name: DACS for Sun-3 -> Lynwood/LynX, Version 4.4 (1.1)

Certificate Number: 891027S1.10184

Host: SUN-3/50 Workstation under SunOS UNIX, Version 4.2,
Release 4.0_EXPORT

Target: Lynwood j430 under LynX, Version 1.4F

Testing Completed October 27, 1989 Using ACVC 1.10

This report has been reviewed and is approved.

Ada Validation FacLt Ada Vali.ation Fai ity
Dr. David K. JeffersonT r M . Arnold Jo on
Chief, Information Systems Manager, Software Standards
Engineering Division Validation Group
National Computer Systems Engineering Division
Laboratory (NCSL) National Computer Systems

National Institute of Laboratory (NCSL)
Standards and Technology National Institute of

Building 225, Room A266 Standards and Technology
Gaithersburg, MD 20899 Building 225, Room A266

Gaithersburg, MD 20899

Accession For

1NTIS CRA&I

Ada Validation OCganization UTIC T"B E
Dr. Johm F. K1amer 6

Institute for Dgfense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington DC 20301

AVF Control Number: NIST89DDC5802_1. 10
DATE VSR C1PLEIED BEFORE ON-SITE: 10-02-89
DATE VSR CCMPI=TED AFTER ON-SITE: 12-04-89
DATE VSR MDIFIED PER AVO CCM4ERS: 12-15-89
DATE VSR MDIFIED PER AVO CMENTIS: 04-30-90

Ada CMPIL=
OIDATI0N SUMMARY RPORT:

Certificate Number: 891027S1.10184
DDC T IONAL A/S

DACS for Sun-3 -> Lynwood/LynX, Version 4.4 (1.1)
SUN-3/50 Workstation Host and Lynwood j430 Target

Ccmpletion of On-Site Testing:
27 October 1989

Prepared By:
Software Standards Validation Group
National Cipxter Systems Laboratory

National Institute of Standards and Technology
Building 225, Roam A266

Gaitbiersburg, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 1-2

1.2 USE OF THIS VALIDATION SUMMARY REPORT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS 3-6
3.7 ADDITIONAL TESTING INFORMATION3-7
3.7.1 Prevalidacion 3-7
3.7.2 Test Method 3-7
3.7.3 Test Site3-8

APPENDIX A CONFORMANCE STATEMENT

APPENDIX B APPENDIX F'OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

APPENDIX E COMPILER OPTIONS AS SUPPLIED BY
DDC INTERNATIONAL A/S

CHAPTER I

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability(ACVC)Y- An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that
is not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies--for example, the maximum length of identifiers or the
maximum values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the dependencies observed
during the prodess of testing this compiler are given in this report.
The information in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of validating is to ensure
conformity of the compiler to the Ada Standard by testing that the
compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent, but is permitted
by the Ada Standard. Six classes of tests are used. These tests are
designed to perform checks at compile time, at link time, and during
execution.

I-1

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an

Ada compiler. Testing was carried out for the following purposes:

To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any language constructs not supported by

the compiler but required by the Ada Standard

To determine that the implementation-dependent behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by the AVF according to

procedures established by the Ada Joint Program Office and administered
by the Ada Validation Organization (AVO). On-site testing was completed
27 October 1989 at Lyngby, Denark.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO

may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedom of Information

Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

The organizations represented on the signature page of this report do

not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no

nonconformities to the Ada Standard other than those presented. Copies

of this report are available to the public from:

Ada Information Clearinghouse

Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)

Washington DC 20301-3081

or from:

Software Standards Validation Group
National Computer Systems Laboratory

National Institue of Standards and Technology
Building 225, Room A266

Gaithersburg, Maryland 20899

1-2

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

I. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, I January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programming language.

Ada Commentary An Ada Commentary contains all information relevant
to. the Commentary point addressed by a comment on
the Ada Standard. These comments are given a
unique identification number having the form
AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and

1-3

technical support for Ada validations to ensure
consistent practices.

Compiler A processor for the Ada language. In the context of
this report, a compiler is any language processor,
including cross-compilers, translators, and
interpreters.

Failed test An ACVC test for which the compiler generates a result
that demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding
a particular feature or a combination of features to the
Ada Standard. In the context of this report, the term
is used to designate a single test, which may comprise
one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be
incorrect because it has an invalid test objective,
fails to meet its test objective, or contains illegal or
erroneous use of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce errors
because of the way in which a program library is urid at link time.

Class A tests ensure the successful compilation and execution of legal
Ada programs with certain language constructs which cannot be verified
at run time. There are no explicit program components in a Class A test

1-4

to check semantics. For example, a Class A test checks that reserved
words of another language (other than those already reserved in the Ada
language) are not treated as reserved words by an Ada compiler. A Class
A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it contains is detected by the
compiler.

Class C tests check the run time system to ensure that legal Ada
programs can be correctly compiled and executed. Each Class C test is
self-checking and produces a PASSED, FAILED, or NOT APPLICABLE message
indicating the result when it is executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a compiler
by the Ada Standard for some parameters--for example, the number of
identifiers permitted in a compilation or the number of units in a
library--a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test compiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the
Ada Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed bv a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is
rejected by the compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is
attempted. A Class L test passes if it is rejected at link time--that
is, aft attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated. In some cases, an
implementation may legitimately detect errors during compilation of the
test.

Two library units, the package REPORT and the procedure CHECKFILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,

1-3

FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some compiler optLmizations allowed by the .da
Standard that would circumvent a test objective. The procedure
CHECKFILE is used to check the contents of text files written by some
of the Class C tests for Chapter 14 of the Ada Standard. The operation
of REPORT and CHECKFILE is checked by a set of executable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended
to ensure that the tests are reasonably portable without modification.
For example, the tests make use of only the basic set of 55 characters,
contain lines with a maximum length of 72 characters. use small numeric
values, and place features that may not be supported by all
implementations in separate tests. However, some tests contain values
that require the test to be customized according to
implementation-specific values--for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an
implementation is considered each time the implementation is validated.
A test that is inapplicable for one validation is not necessarily
inapplicable for a subsequent validation. Any test that was determined
to contain an illegal language construct or an erroneous language
construct is withdrawn from the ACVC and, therefore, is not used in
testing a compiler. The tests withdrawn at the time of this valilation
are given in Appendix D.

1-6

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under
the following configuration:

Compiler: DACS for Sun-3 -> Lynwood/LynX, Version 4.4
(1.1)

ACVC Version: 1.10

Certificate Number: 891027S1.10184

Host Computer:

Machine: SUN-3/50 Workstation

Operating System: SunOS UNIX, Version 4. 2, Release
4.0_EXPORT

Memory Size: 8 MBytes

Target Computer:

Machine: Lynwood j430

Operating System: LynX, Version 1.4F

Memory Size: 8 MBytes

Communications Network: Ethernet between Lynwood j430 and Sun-
3/50 WORKSTATION; Ethernet between Sun-
3/50 WORKSTATION and the VAX-8350 (using
DNICP net software utility).

2-1

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior
of a compiler in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. However, tests in other classes also
characterize an implementation. The tests demonstrate the following

characteristics:

a. Capacities.

(1) The compiler correctly processes a compilation containing

723 variables in the same declarative part. (See test
D29002K.)

(2) The compiler correctly processes tests containing loop
statements nested to 65 levels. (See tests D55A03A..H (8
tests).)

(3) The compiler accepts tests containing block statements

nested to 65 levels. (See test D56001B.)

(4) The compiler correctly processes tests containing recursive
procedures separately compiled as subunits nested to 17
levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

(1) This implementation supports the additional predefined
types SHORTINTEGER and LONG FLOAT in the package
STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at
which constraints are checked are not defined by the language.

While the ACVC tests do not specifically attempt to determine
the order of evaluation of expressions, test results indicate

the following:

(1) All of the default initializatlon expressions for record
components are evaluated before any value is checked for
membership in a component's subtype. (See test C32117A.)

(2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

2-2

(3) This implementation uses no extra bits for extra precision
and uses all extra bits for extra range. (See test
C35903A.)

(4) NUMERICERROR is raised when an integer literal operand in
a comparison or membership test is outside the range of the
base type. (See test C45232A.)

(5) NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the
range of the base type. (See test C45252A.)

(6) Underflow is gradual. (See tests C45524A..K (11 tests).)

d. Rounding.

The method by which values are rounded in type conversions is
not defined by the language. While the ACVC tests do not
specifically attempt to determine the method of rounding, the
test results indicate the following:

(1) The method used for rounding to integer is round to even.
(See tests C46012A..K (11 tests).)

(2) The method used for rounding to longest integer is round to
even. (See tests C46012A..K (11 tests).)

(3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test
C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

(1) Declaration of an array type or subtype declaration with
more than SYSTEM.MAXINT components raises NUMERICERROR.
(See test C36003A.)

(2) NUMERICERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

(3) NUMERICERROR is raised when 'LENGTH is applied to an array
type with SYSTEM.MAXINT + 2 components. (See test
C36202B.)

2-3

(4) A packed BOOLEAN array having a 'LENGTH exceeding
INTEGER'LAST raises NUMERIC ERROR when declaring two packed
Boolean arrays with INTEGER'LAST + 3 components. (See test
C52103X.)

(5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERICERROR when the array
type is declared. (See test C52104Y.)

(6) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERICERROR or CONSTRAINTERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However,
lengths must match in array slice assignments. This
implementation raises NUMERICERROR when the array type is
declared. (See test E52103Y.)

(7) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

(8) In assigning two-dimensional array types, the expression is
not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

f. Discriminated types.

(1) In assigning record types with discriminants, the
expression is evaluated in its entirety before
CONSTRAINTERROR is raised when checking whether the
expression's subtype is compatible with the target's
subtype. (See test C52013A.)

g. Aggregates.

(1) In the evaluation of a multi-dimensional aggregate, the
test results indicate that all choices are evaluated before
checking against the index type. (See tests C43207A and
C43207B.)

(2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identical bounds. (See test E43212B.)

(3) CONSTRAINT ERROR is raised before all choices are evaluated
when a bound in a non-null range of a non-null aggregate
does not belong to an index subtype. (See test E43211B.)

2-4

h. Pragmas.

(1) The pragma INLINE is supported for functions or procedures.
(See tests LA3004A. .B (2 tests), EA3004C. .D (2 tests), and
CA3004E..F (2 tests).)

i. Generics.

(1) Generic specifications and bodies cannot be compiled in
separate compilations. (See tests CA2009C, CA2009F,
BC3204C, and BC3205D.)

Generic package declarations and bodies can be compiled in
separate compilations so long as no instantiations of those
units precede the bodies. This compiler requires that a
generic unit's body be compiled prior to instantiation, and
so the unit containing the instantiations is rejected.

(2) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3OIIA.)

(3) Generic subprogram declarations and bodies can be compiled
in separate compilations. (See test CAI012A.)

(4) Generic library subprogram specifications and bodies can be
compiled in separate compilations. (See test CAI012A.)

(5) Generic non-library subprogram bodies cannot be compiled in
separate compilations from their stubs. (See test
CA2009F.)

(6) Generic package declarations and bodies cannot be compiled
in separate compilations. (See tests CA2009C, BC3204C, and
BC3205D.)

(7) Generic library package specifications and bodies cannot be
compiled in separate compilations. (See tests BC3204C and
BC3205D.)

(8) Generic non-library package bodies as subunits cannot be
compiled in separate compilations. (See test CA2009C.)

(9) Generic unit bodies and their subunits can be compiled in
separate compilations. (See test CA3011A.)

j. Input and output.

(1) The package SEQUENTIALIO can be instantiated with

2-5

unconstrained array types and record types with
discriminants without defaults. (See tests AE2101C,
EE2201D and EE220IE.)

(2) The package DIRECTIO can be instantiated with
unconstrained array types but only if the maximum element
size supported for DIRECT_10 is 2 147 483 647 bits;
otherwise, USEERROR is raised. (See tests AE2101H and
EE240D.)

(3) The package DIRECT 10 can be instantiated with record types
with discriminants wihout defaults. (See test EE2401G.)

(4) USE_ERROR is raised when Mode IN FILE is not supported for
thi operation of CREATE for SEQUENTIALIO. (See test
CE2102D.)

(5) USE_ERROR is raised when Mode IN FILE is not supported for
the operation of CREATE for DIRECT_10. (See test CE2102I.)

(6) USEERROR is raised when Mode INFILE is not supported for
the operation of CREATE for text files. (See test
CE3102E.)

(7) Modes IN FILE and OUTFILE are supported for text files.
(See test CE3102I..K).

(8) RESET and DELETE operations are supported for
SEQUENTIALIO. (See tests CE2102G and CE2102X.)

(9) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

(10) RESET and DELETE operations are supported for text files.
(See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

(11) Overwriting to a sequential file truncates to the last
element written. (See test CE2208B.)

(12) Temporary sequential files are given names and deleted when
closed. (See test CE2108A.)

(13) Temporary direct files are given names and deleted when
closed. (See test CE2108C.)

(14) Temporary text files are given names and deleted when
closed. (See test CE3112A.)

(15) More than one internal file can be associated with each
external file for sequential files when writing or reading.
(See tests CE2107A..E (5 tests), CE2102L, CE2110B, and

2-6

CE2111D.)

(16) More than one internal file can be associated with each
external file for direct files when writing or reading.
(See tests CE21O7F..H (3 tests), CE2110D and CE2111H.)

(17) More than one internal file can be associated with each
external file for text files when writing or reading. (See
tests CE3111A, CE3111D..E (2 tests), and CE3114B.)

2-7

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 457 tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding that
supported by the implementation. Modifications to the code, processing,
or grading for 73 tests were required to successfully demonstrate the
test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 123 1129 1875 17 26 46 3216

Inapplicable 6 9 440 0 2 0 457

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

3-1

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT CHAPTER TOTAL
3 4 5 6 7 8 9 10 _1 12 13 14

Passed 195 572 543 245 172 99 160 331 135 36 250 181 297 3216

Inapplicable 17 77 137 3 0 0 6 1 2 0 2 188 24 457

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10 at the time
of this validation:

A39005G B97102E C97116A BC3009B CD2A62D CD2A63A
CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B CD2A66C
CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D CD2A76A
CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G CD2A84M
CD2A84N CD2B15C CD2DllB CD5007B CD50110 CD7105A
CD7203B CD7204B CD7205C CD7205D CE21071 CE3111C
CE3301A CE3411B E28005C ED7004B ED7005C ED7005D
ED7006C ED7006D

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of
features that a compiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each time a validation is attempted. A
test that is inapplicable for one validation attempt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 457
tests were inapplicable for the reasons indicated:

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)

3-2

C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C241131..K (3 tests) are not applicable because the line length of
the input file must not exceed 126 characters.

c. C355081, C35508J, C35508M, C35508N, ADIC04D, AD3015C, AD3015F,
AD3015H, AD3OI5K, CDICO4B, CDIC04C, CDlC04E, CD2A23C, CD2A23D,
CD2A24C, CD2A24D, CD2A24G, CD2A24H, CD3015A, CD3015B, CD3015D,
CD3015E, CD3015G, CD30151, CD3015J, CD3015L, CD4051A, CD4051B,
CD4051C, CD4051D (30 tests) are not applicable because this
implementation does not support the specified change in
representation for derived types.

d. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORTFLOAT.

e. A39005E, C87B62C, CDl009L, CDlC03F, CD2DllA, CD2Dl3A, ED2A56A (7
tests) are not applicable because 'SMALL clause is not supported.

f. The following 16 tests are not applicable because this
implementation does not support a predefined type LONGINTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55BO7A B55B09C B86001W
CD710F

g. C45231D, CD7l01G, and B86001X, are not applicable because this
implementation does not support any predefined integer type with a
name other than INTEGER, or SHORTINTEGER.

h. C45531M, C45531N, C45532M, and C45532N use fine 48 bit fixed point
base types which are not supported by this compiler.

i. C455310, C45531P, C455320, and C45532P use coarse 48 bit fixed
point base types which are not supported by this compiler.

j. C4AOl3B is not applicable because the evaluation of an expression
involving 'MACHINERADIX applied to the most precise floating-point
type would raise an exception; since the expression must be static,
it is rejected at compile time.

k. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

1. B86001Z is not applicable because this implementation support. ,u
predefined floating-point type with a name other than FLOAT, or
LONGFLOAT.

3-3

m. C96005B is not applicable because there are no values of type
DURATION'BASE that are outside the range of DURATION.

n. CA2009C is not applicable because this implementation does not
permit compilation of generic non-library package bodies in
separate files from their specifications.

o. CA2009F is not applicable because this implementation does not
permit compilation of generic non-library subprogram bodies in
separate files from their specifications.

). BC3204C and BC3205D are not applicable because this implementation
does not permit compilation of generic library package bodies in
separate files from their specifications.

q. CD1009C, CD2A41A. .B, CD2A41E, CD2A42A. .J (14 tests) are not
applicable because this implementation does not support the 'SIZE
clause for floating-point types.

r. D2A1 C#, CD2A52A..D, CD2A52G..J, CD2A53A..E, CD2A54A..D, CD2A54G. .J
(22 tests) are not applicable because this implementation does not
support the 'SIZE clause for a fixed-point types.

t. CD2A61A. .F, CD2A61H. .L, CD2A62A. .C, CD2A64A. .C, CD2A65A..C,
CD2A71A..D, CD2A72A..D, CD2A74A. .B, CD2A75A. . B (32 tests) are not
applicable because this implementation does not support the 'SIZE
clause for an array type which does not imply compression of inter-
component gaps.

u. CD2A84B..I and CD2A84K..L (10 tests) are not applicable because
this implementation does not support the 'SIZE clause for an access
type.

v. CD404A is not applicable because this implementation does not
support the alignment clauses for alignments other than
SYSTEM.STORAGEUNIT for record representation clauses.

w. CD5003B..I (8 TESTS) CDS011A..I (9 tests) CDS011K..N (4 tests)
CD5011Q..S (3 tests) CD5OI2A..J (10 tests) CD5012L..M (2 tests)
CD5OI3A..I (9 tests) CD5Ol3K..O (5 tests) CD5013R..S (2 tests)
CD5OI4A. .0 (15 tests) CD5OI4R. .Z (9 tests) are not applicable
because this implementation does not support address clauses for a
variable.

x. CD5OlIB, CD50ID, CD5011F, CDSOIIH, CD5011L, CD5011N, CD5011R,
CD5011S, CD5012C..D, CD5012G..H, CD5O12L, CDS013B, CD5013D,
CD5013F, CD5013H, CD5013L, CD5Ol3N, CD5013R, CD5014B, CD5014D,
CD5Ol4F, CD5OI4H, CDS014J, CD5OI4L, CD5Ol4N, CD5014U (28 tests) are
not applicable because this implementation does not support address
clauses for a constant.

3-4

y. CDSOl2J, CD5013S, CD5014S (3 tests) are not applicable because this
implementation does not support address clauses.

z. CE2102E is inapplicable because this implementation supports CREATE
with OUTFILE mode for SEQUENTIALIO.

aa. CE2102F is inapplicable because this implementation supports CREATE
with INOUTFILE mode for DIRECTIO.

ab. CE2102J is inapplicable because this implementation supports CREATE
with OUTFILE mode for DIRECTIO.

ac. CE2102N is inapplicable because this implementation supports OPEN
with INFILE mode for SEQUENTIALIO.

ad. CE21020 is inapplicable because this implementation supports RESET
with IN FILE mode for SEQUENTIALIO.

ae. CE2102P is inapplicable because this implementation supports OPEN
with OUTFILE mode for SEQUENTIALIO.

af. CE2102Q is inapplicable because this implementation supports RESET
with OUTFILE mode for SEQUENTIALIO.

ag. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFILE mode for DIRECTIO.

ah. CE2102S is inapplicable because this implementation supports RESET
with INOUTFILE mode for DIRECTIO.

ai. CE2102T is inapplicable because this implementation supports OPEN
with INFILE mode for DIRECTIO.

aj. CE2102U is inapplicable because this implementation supports RESET
with INFILE mode for DIRECTIO.

ak. CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECT_10.

al. CE2102W is inapplicable because this implementation supports RESET
with OUTFILE mode for DIRECT IO.

am. CE2105A is inapplicable because CREATE with INFILE mode is not
supported by this implementation for SEQUENTIALIO.

an. CE21053 is inapplicable because CREATE with IN FILE mode is not
supported by this implementation for DIRECT_10.

ao. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ap. CE3102G is inapplicable because text file deletion of an external

3-5

file is supported by this implementation.

aq. CE3102I is inapplicable because text file CREATE with OUTFILE mode
is supported by this implementation.

ar. CE3102J is inapplicable because text file OPEN with IN FILE mode is
supported by this implementation.

at. CE3102K is inapplicable because text file OPEN with OUT FILE mode
is supported by this implementation.

au. CE3109A is inapplicable because text file CREATE with INFILE mode
is not supported by this implementation.

av. CE3111B and CE3115A simultaneously associate input and output files
with the same external file, and expect that output is imediately
written to the external file and available for reading; this
implementation buffers files, and each test's attempt to read such
output (at lines 87 & 101, respectively) raises END ERROR.

aw. EE2401D is inapplicable because the maximum element size supported
for DIRECT 10 is 2_147_483_647 bits. USE ERROR is raised.

3.6 TEST, FM=ING, AND EVALUATION MDDIFICATI0NS

It is expected that sane tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
completion of an (otherwise) applicable test. Examples of such
modifications include: adding a length clause to alter the default size
of a collection; splitting a Class B test into subtests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conformiq behavior that was not anticipated
by the test (such as raising one exception instead of another).

Modifications were required for 73 tests.

The following 65 tests were split because syntax errors at one point
resulted in the compiler not detecting other errors in the test:

B22003A B26001A B26002A B26005A B28001D B28003A B29001A
BAMO3A B2AO3B B2AO03C B33301A B35101A B37106A B37301B
B37302A B38003A B38003B B38009A B38009B B51001A B53009A
B54AOlC B54AOlH B55AOlA B61001C B61001D B61001F B61001H
B610011 B61001M B61001R B61001S B61001W B67001H B91001A
B91002A B91002B B91002C B91002D B91002E B91002F B91002G
B91002H B910021 B91002J B91002K B91002L B95030A B95061A
B95061F B95061G B95077A B97103E B97104G BA1I01B BC1109A
BC1109C BC1109D BC1202A BC1202B BC1202E BC1202F BC1202G
BC2001D BC20O1E

3-6

The following 8 tests contain modifications to their respective source
code files:

C34007A, C34007D, C34007G, C34007J, C34007M, C34007P, C34007S, and
C87B62B (8 tests) The AVO accepts the implementer's argument that,
without there being a STORAGESIZE length clause for an access
type, the meaning of the attribute 'STORAGE SIZE is undefined for
that type. Therefore, a length clause has been added in these
tests in order to alter the default size of a collection. 1024 was
used for all of the above tests except for C34007D and C34007G
which used 2048.

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10
produced by the DACS for Sun-3 -> Lynwood/LynX, Version 4.4 (1.1)
compiler was submitted to the AVF by the applicant for review. Analysis
of these results demonstrated that the compiler successfully passed all
applicable tests, and the compiler exhibited the expected behavior on
all inapplicable tests.

3.7.2 Test Method

Testing of the DACS for Sun-3 -> Lynwood/LynX, Version 4.4 (1.1)
compiler using ACVC Version 1.10 was conducted on-site by a validation
team from the AVF. The configuration in which the testing was performed
is described by the following designations of hardware and software
components:

Host computer: SUN-3/50 Workstation
Host operating system: SunOS UNIX, Version 4.2, Release

4.0_EXPORT
Target computer: Lynwood j430
Target operating system: LynX, Version 1.4F
Compiler: DACS for Sun-3 -> Lynwood/LynX, Version

4.4 (1.1)

The ACVC Test Suite was ioaded onto a VAX-8350 from the magnetic tape.
The ACVC Test Suite was then downloaded onto the SUN-3/50 Workstation
from the VAX-8530 via Ethernet (using DNICP net software utility). Then
Ethernet was used between Lynwood J430 and Sun-3/50 WORKSTATION.

A magnetic tape containing all tests except for withdrawn tests was
taken on-site by the validation team for processing. Tests that make
use of implementation-specific values were customized on-site. Tests
requiring modifications during the prevalidation testing were modified
on-site.

3-7

TEST INFORMATION

The contents of the magnetic tape were loaded onto a VAX-8350 and
transferred to the host computer, SUN-3/50 Workstation, via Ethernet
(using DNICP net software utility). Then Ethernet was used between
Lynwood j430 and Sun-3/50 WORKSTATION.

After the test files were loaded to disk, the full set of tests was
compiled and linked on the SUN-3/50 Workstation, and all executable
tests were run on the Lynwood j430. Results were transferred from the
Lynwood j430 to the Sun-3/50 Workstation using Ethernet and were then
transfered to the VAX-8530 via Ethernet (using DNICP net software
utility) from the Sun-3/50 Workstation. The results were then printed
from the VAX-8350 computer.

The compiler was tested using command scripts provided by DDC
INTERNATIONAL A/S and reviewed by the validation team. The compiler was
tested using the following option settings. See Appendix E for a
complete listing of the compiler options for this implementation.

-L
-a

Tests were compiled, linked, and executed (as appropriate) using a
single host and target computer. Test output, compilation listings, and
job logs were captured on magnetic tape and archived at the AVF.
Selected listings examined on-site by the validation team were also
archived.

3.7.3 Test Site

Testing was conducted at Lyngby, Denmark and was completed on 27 October
1989.

3-8

APPENDIX A

DECLARATION OF CONFORMANCE

DDC INTERNATIONAL A/S has submitted the following Declaration of
Conformance concerning the DACS for Sun-3 -> Lynwood/LynX,
Version 4.4 (1.1).

A-I

DECLARATION Of CONFORMANCE

Compiler Implementor: DDC International A/Z
01.-Lundtoftevej 1B
2800 Lyngby, Denmark

Ada Validation Ada Validation Facilit7
Facility: National Computer Systems Laboratory (NCSL)

National Institute of Standards and Technology

Building 225, Room A266
Gaitherburg, MD 20899, U.S.A.

Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: DACS Sun-3 - Lynwood/LynX, Version 4.4 (1.1)
Host Architecture: Sun-3/50 Workstation
Host OS and Version: SunOS UNIX, Version 4.2, Release 4.0_Export
Target Architecture: Lynwood J430
Target OS and Version: LynX, Version 1.4F

Implementor's Declaration

1, the undersigned, representing DDC International A/S, have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in the
compiler(s) listed in this declaration. I declare that DDC International A/S is
the owner of record of the Ada language compiler(s) listed above, and as such,
is rf ponsible for maintaining said compiler(s) in conformance to ANSI/MIL-STD-
1815A. All certificates and registrations for Ada language compiler(s) listed
in this declaration shall be made only in the owner's corporate name.

Date: 21

DDC International A/S
Hasse Hansson, Department Manager

Owner's Declaration

1, the undersigned, representing DOC International A/S, take full

responsibility for implementation and maintenance of the Ada compiler(s) listed
above, and agree to the public disokosure of the final Validation Summary
Report. I declare that all of the Ada language compilers listed, and their
host/taget performance, are in compliance with the Ada Language Standard
ANSI/MIL-STD-181SA.

SDate: 2S-4 Z~ 9'
DOC International A/S
Hasse Hansson, Department Manager

DOC Intemationai A/S GI Lunatoftevel 18 *. j ne Te,;A Telefta
OK-2800 LyngOy -3 +45

A£Po 40 67705 Denmark 4)A 1, "4 A, 9A7 917

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent

conventions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the DACS for Sun-3 ->
Lynwood/LynX, Version 4.4 (1.1) compiler, as described in this Appendix,
are provided by DDC INTERNATIONAL A/S. Unless specifically noted

otherwise, references in this appendix are to compiler documentation and
not to this report. Implementation-specific portions of the package

STANDARD, which are not a part of Appendix F, are:

package STANDARD is

type SHORTINTEGER is range -32_768 .. 32 767;
type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 6 range
-16#7.FFFF C#E31 .. 16#7.FFFF C#E31;

type LONGFLOAT is digits 15 range

-16#F.FFFFFFFFFFFF#E255 .. 16#F.FFFFFFFFFFFF#E255;

type DURATION is delta 2**(-i4) range
-131_072.00000 .. 131_071.00000

end STANDARD;

B-I

Append1.- e

Sun-3/SunOS - User's Guide

F Appendix F of the Ada Reference Manual

F.0 Introduction

This appendix describes the implementation-dependent charac-
teristics of the DDC-I Sun-3/SunCS V Ada Compiler, as required
in the Appendix F frame of the Ada Reference Manual (ANSI/MIL-
STD 1815A).

F.1 Implementation-Dependent Pracmas

There is one implementation-defined pragma: Interfacespelling,
see section 5.6.6.2.

F.2 Implementation-Dependent Attributes

No implementation-dependent attributes are defined.

F-i

OC Intemational A/S

Sun-3/SunOS - User's Guide

F.3 Package SYSTEM

pragma page;
package SYSTEM is

type ADDRESS is new INTEGER;
subtype PRIORITY is INTEGER range 1 .. 32;
type NAME is (SUN);
SYSTEM NAME: constant NAME := SUN;
STORAGE UNIT: constant := 8;
MEMORY SIZE: constant := 2048 * 1024;
MIN INT: constant := -2_147_483_648;
MAX INT: constant := 2 147_483_647;
MAX DIGITS: constant := 15;
MAX-MANTISSA: constant := 31;

FINE DELTA: constant := 2#1.0#E-31;

TICK: constant := 1.0;

type interfacelanguage is (C,AS);

-- Compiler system dependent types:

SUBTYPE Integer_16 IS shortinteger;
SUBTYPE Natural 16 IS Integer_16 RANGE 0..Integer_16'LAST;
SUBTYPE Positive_16 IS Integer_16 RANGE 1..Integer_16'LAST;

SUBTYPE Integer_32 IS integer;
SUBTYPE Natural_32 IS Integer_32 RANGE 0..Integer_32'LAST;
SUBTYPE Positive 32 IS Integer_32 RANGE l..Integer_32'LAST;

end SYSTEM;

F-2

ODC Internationai A/S

Appendix F

Sun-3/SunOS - User's Guide

F.4 Representation Clauses

F.4.1 Length Clause

A size attribute for a type T is accepted in the following cases:

- If T is a discrete type then the specified size must be greater
than an equal to the number of bits needed to represent a value
of the type, and less than or equal to 32.

- If T is a fixed point type, a floating point type, an access
type or a task type the specified size must be equal to.the num-
ber of bits used to represent values of the type.

- If T is a record type that is not derived then the specified size
must be greater than or equal to the number of bits used to rep-
resent value of the type.

- If T is an array type that is not derived, and has a size known
at compile time then the specified size must be equal to the num-
ber of bits used to represent values of the type. In all other
cases the size attribute is not accepted.

Furthermore, the size attribute has only effect if the type is part
of a composite type.

- Using the STORAGESIZE attribute for a collection will set an up-
per limit on the total size of objects allocated in this collec-
tion. If further allocation is attempted, the exception
STORAGE ERROR is raised.

- When STORAGE SIZE is specified in a length clause for a task, the
process stack area will be of the specified size. The process
stack area will be allocated inside the "standard" stack segment.

F.4.2 Enumeration Representation Clause

Enumeration representation clauses may specify representations in
the range of INTEGER'FIRST + 1..INTEGER'LAST - 1.

Enumeration representation clauses are not supported for derived
types.

F-3

OOC Intemational A/S

Sun-3/SunOS - User's Guide

F.4.3 Record Representation Clauses

When representation clauses are applied to records the following
restrictions are imposed:

- the component type is a discrete type different from
LONGINTEGER,

- the component type is an array with a discrete element type dif-
ferent from LONGINTEGER,

- if the component is a record or an unpacked array, it must start
on a storage unit boundary, a storage unit being 16 bits;

- a record occupies an integral number of storage units,

- a record must be specified with its proper size (in bits),
regardless of whether the component is an array or not,

- if a non-array component has a size which equals or exceeds one
storage unit (16 bits), the component must start on a storage
unit boundary, i.e. the component must be specified as:

component at N range 0..16 * M - 1;

where N specifies the relative storage unit number (0,1,...) from
the beginning of the record, and M the required number of storage
units (1,2....)

- the elements in an array component should always be wholly con-
tained in one storage unit,

- if a component has a size which is less than one storage unit, it
must be wholly contained within a single storage unit:

component at N range X .. Y;

where N is as in the previous paragraph, and 0 <= X <= Y <= 15

If the record type contains components which are not covered by a
component clause, they are allocated consecutively after the com-
ponent with the value. Allocation of a record component without a
component clause is always aligned on a storage unit boundary. Holes
created because of component clauses are not otherwise utilized by
the compiler.

F-4

OOC Intetnationaf A/ S

AppenQ1x r

Sun-3/SunOS - User's Guide

F.4.3.1 Alignment Clauses

Alignment clauses for records are implemented with the following
characteristics:

- If the declaration of the record type is done at the outermost
level in a library package, any alignment is accepted.

- If the record declaration is done at a given static level
(higher than the outermost library level, i.e. the permanent
area), only word alignments are accepted.

- Any record object declared at the outermost level in a library
package will be aligned according to the alignment clause
specified for the type. Record objects declared elsewhere can
only be aligned on a word boundary. If the record type has been
associated a different alignment, an error message will be
issued.

- If a record type with an associated alignment clause is used in
a composite type, the alignment is required to be one word: an
error message is issued if this is not the case.

F.5 Imalementation-Dependent Names for Imulementation-Devendent
Components

None defined by the compiler.

F.6 Address Clauses

Not supported by the compiler.

F.7 Unchecked Conversion

Unchecked conversion is only allowed between objects of the same
"size". In this context the "size" of an array is equal to that of
t-wo access values and the "size" of a packed array is equal to two
access values and an integer. This is the only restriction imposed
on unchecked conversion.

F-5

OOC Intemationad A/S

Sun-3/SunCS - User's Guide

F.8 Input-Output Packages

The implementation supports all requirements of the Ada lan-
guage. It is an effective interface to the UNIX file system, and in
the case of text input-output also an effective interface to the
UNIX standard input, standard output and standard error streams.

This section describes the functional aspects of the interface to
the UNIX file system, including the means by which the various file
control facilities are made available to the Ada programmer.

The Ada input-output concept as defined in Chapter 14 of the ARM
does not constitute a complete functional specification of the
input-output packages. Some aspects are not discussed at all, while
others are deliberately left open to an implementation. These gaps
are filled by this section.

The reader should be familiar with

[DoD 83] - The Ada Language definition

and some sections require that the reader is familiar with

[UNIX 3] - UNIX Programmer Reference Manual

F.8.1 External Files

External files can be on disc, tape, or be a character device (a
line printer, terminal etc.).

Files on disc exist after the execution of the program unless given
an empty NAME parameter.

The implementation will raise USEERROR when an operation is inap-
propriate for the physical device. In particular the concept of a
page or end-of-file or file size are not considered to be applicable
to terminal devices and attempted use of operations involving these
concepts will raise USEERROR.

Deletion is not allowed on non-disc devices and requires write ac-
cess.

Creation of files with mode IN FILE will raise USEERORR.

F-6

OOC International A/S

Appen..x t

Sun-3/SunOS - User's Guide

* File Management

L.s subsection contains information regarding file management:

- restriction on sequential and direct input-output,
- the NAME parameter,
- the FORM parameter,
- file access.

F.8.2.1 Restrictions on Sequential and Direct Incut-Output

The only restriction is that placed on the element size, i.e. the
number of bytes occupied by the ELEMENT TYPE: the maximum size al-
lowed is 2 147 1183 647 bits; and if the size of the type is
variable, the maximum size must be determinable at the point of in-
stantiation from the value of the SIZE attribute for the element
type.

F.8.2.2 The NAME Parameter

The NAME parameter when non-empty must be valid UNIX path name.
Access denial to any directory in the path name will raise
USEERROR.

The UNIX names "stdin", "stdout", and "stderr" can be used in con-
Junction with TEXT IO.open. No physical opening of the external
file is performed and the Ada file will be associated with the al-
ready open external file.

Temporary files (NAME = "") are created using tmpname (3) and will
be deleted on closure. Abnormal program termination may leave tem-
porary files in existence.

Default naming convcntions and version numbers ar- not applicable to
UNIX.

F.8.2.3 The FORM Parameter

The FORM parameter has the following facilities:

a) Opening a FIFO special file using open(2) system call. This is
achieved by the string "FIFO". If this facility is used with
CREATE, the exception USE ERROR will be raised. This facility is
not available for direct ±o or text io and raises USE ERROR.

F-7

OOC Intemauionat A, S

Sun-3/Sun. ' Js Guide

The default for this facility is indicated by the "CRDINARY"
string designau.ng the creation of an ordinary file. If this
string is used with OPEN and the external file is of type FIFo
special, the operation raises USEERROR.

The 0 NDELAY flag associated with FIFO specials (see open(2)) can
be modified using an additional string after the "FIFO" string.
The strings "0NDELAY=ON" and "0 NDELAY=OFF" set the flag on and
off respectively. The default is "O NDELAY=OFF". Thus "FIFO
O NDELAY=ON" opens a FIFO special file and set the ONDELAY flag
on.

b) The use of the string "APPEND" with text-files prevents the
emptying of the file for the OPEN operation. The presence of

"APPEND" in the form parameter is only applicable tz OPEN, and

its use in CREATE will raise USEERROR. The string "NOAPPEND"
signifies the default.

The opened file will be treated by the routines delete as if

empty.

Opening direct and sequential files with the "APPEND" or

"NOAPPEND" raises USEERROR.

c) The changing of default access rights by specifying the mode
parameter used in the open(2) system call used to implement the

Ada CREATE procedure. This is achieved by use of the string
"MODE=<mode>" where <mode> is an octal, decimal or hexadecimal
integer in the standard UNIX format. Only the nine least sig-

nificant bits of the creation mask are used. This facility is

also used by OPEN to change the access permissions by means of
the chmod(2) system call.

F-8

DOC intenationad A/S

Appendix F

Sun-3/SunOS - User's Guide

-a default *for mode is 0644, allowing the owner to read and
its, and the group and others to read. The bits mean (as in
:andard UNIX):

rw- r-- r--

Other privileges

-Group privileges

Owner privileges

NOTES:

The options are delimited by commas.

If more than one of the three option types is included, the
rightmost option is selected.

Blanks are not significant in any part of the string.

The FORM parameter provides all default options as required in the
ARM.

F-9

OOC Intenational A/S

Sun-3/SunOS - User's Guide

.8.2.3.1 Syntax of the Form Parameter

<form parameter> :- (<option> C,<option> C,<option>] I I

<option> :- <access-rights> I <fifooption> I <append_opticn>

<access-rights> := MODE= <mode>

<fifo option> := <fifo special> I ORDINARY

<appendoption> := APPEND I NOAPPEND

<mode> :- <hex-number> I <octal-number> I <decimal-number>

<fifo special> := FIFO [<o_ndelay_parameter>1

<ondelay_parameter> := ONDELAY=ON I ONDELAY=OFF

<decimalnumber> := <decimaldigit> (<decimaldigit>)

<hex-number> := 0 x <hex-suffix>

<octal-number> := 0 <octal-suffix>

<hex-suffix> := <hex digit> (<hex digit>)

<octalsuffix> <octaldigit> (<octal_digit>)

<hex_digit> :=0 1 ... I 9 1 A .. F I a I -I f

<decimal_dlgit> :4 0 I 1 ... 9

<octaldigit> := 0 I 1 ... 7

F.8.2.4 File Access

Any number of files in an Ada program may be associated with
any external file at any time. Each end of a FIFO special file
must be accessed from two UNIX processes which will have to
correspond to two Ada programs.

It is the responsibility of the programmer to consider th., ef-
fects of file sharing between programs.

The RESET and OPEN operations to OUT-FILE mode empty the file
in SEQUENTIALIO and TEXT_IO.

F-10

OOC Intemnational A/S

Appenaix r

Sun-3/SunOS - User's Guide

archanging between SEQUENTIAL IO and DIRECTI for files of
same object types can be achieved without taking special

.sures.

The state of the external file at any moment is in general un-
deiined. Closing and resetting a file will, however, flush any
buffering in the input-output packages. Unpredictable results
may occur if the program is terminated without calling CLOSE.

F.8.3 Sequential Input-Output

The implementation omits type checking for DATAERROR, in case
the element type is of an unconstrained type, ARM 14.2.2(4),
i.e.:

... f : FILE TYPE
type et is 1..100;
type eat is array(et range <>) of integer;

X : eat(1..2);

Y : eat(1..4);

-- write X, Y:

write(f, X); write(f, Y); reset(f, INFILE);

-- read X into Y and Y into X:

read(f, Y); read(f, X);

This will give undefined values in the last 2 elements of Y,
and not DATAERROR.

F-11

DOC Internatlonal A/S

Sun-3/SunOS - User's Guide

F 1.3.1 Specification of the Package SequentialIO

w th BASIC_10_TYPES;

w th IO EXCEPTIONS;

generic

type ELEMENTTYPE is private;

package SEQUENTIAL_10 is

type FILETYPE is limited private;

type FILEMODE is (INFILE, OUT_FILE);

-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE OUT FILE;
NAME : in STRING : -
FORM : in STRING := "");

procedure OPEN (FILE : in out FILETYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING :u "");

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILETYPE);

procedure RESET (FILE : in out FILETYPE;
MODE : in FILEMODE);

procedure RESET (FILE : in out FILE TYPE);

fanction MODE (FILE : in FILE TYPE) return FILEMODE:

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILETYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN:

-- input and output operations

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENT TYPE);

F-12

DOC Inteniational A/S

Appendix F

Sun-3/SunOS - User's Guide

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

-- exceptions

STATUS ERROR : exception renames IO EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODE ERROR;
NAME ERROR : exception renames 10_EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames IO EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames 10EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATAERROR : exception renames 10-EXCEPTIONS.DATAERROR,

private

type FILETYPE is new BASIC_10_TYPES.FILETYPE;

end SEQUENTIAL 10;

F.8.4 Direct Input-Output

The implementation omits type checking for DATAERROR, in case
the element type is of an unconstrained type, [Dod 83]
14.2.4(4), see F.8.3.

F-13

OOC Intemationai A/S

Sun-3/SunOS - User's Guide

F.8.4.1 Specification of the Package DirectIO

with BASIC 10 TYPES;

with IO EXCEPTIONS;

generic

type ELEMENTTYPE is private;

package DIRECT IO is

type FILE TYPE is limited private;

type FILEMODE is (IN_FILE, INOUTFILE, OUTFILE);

type COUNT is range O..INTEGER'LAST;
subtype POSITIVECOUNT is COUNT range 1..COUNT'LAST;

-- File management

procedure CREATE(FILE : in out FILE TYPE;
MODE : in FILE MODE := INOUT FILE;
NAME : in STRING := "";
FORM : in STRING :z "");

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILE MODE;
NAME : in STRING;
FORM : in STRING :- "");

procedure CLOSE (FILE : in out FILETYPE);

procedure DELETE(FILE : in out FILE TYPE);

procedure RESET (FILE : in out FILE TYPE;
MODE : in FILE-MODE);

procedure RESET (FILE : in out FILE TYPE);

function MODE (FILE : in FILE TYPE) return FILE MODE;

function NAME (FILE : in FILETYPE) return STRING;

function FORM (FILE : in FILE-TYPE) return STRING;

function IS OPEN(FILE : in FILE-TYPE) return BOOLEAN;

-- input and output operations

F-14

DOC Internationai A/S

Appendix F

Sun-3/SunOS - User's Guide

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENT TYPE:
FROM : in POSITIVE COUNT);

procedure READ (FILE : in FILE TYPE;
ITEM : out ELEMENTTYPE);

procedure WRITE (FILE : in FILE TYPE:
ITEM : in ELEMENT TYPE;
TO : in POSITIVECOUNT);

procedure WRITE (FILE : in FILE TYPE;
ITEM : in ELEMENTTYPE);

procedure SETINDEX(FILE : in FILE TYPE;
TO : in POSITIVECOUNT);

function INDEX(FILE : in FILE TYPE) return POSITIVECOUNT;

function SIZE (FILE : in FILETYPE) return COUNT;

function ENDOFFILE(FILE : in FILE-TYPE) return BOOLEAN;

-- exceptions

STATUS ERROR : exception renames IO EXCEPTIONS.STATUS ERROR;
MODEERROR : exception renames IO EXCEPTIONS.MODEERROR;
NAME ERROR : exception renames IO EXCEPTIONS.NAME ERROR;
USE ERROR : exception renames IO EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATA_ERROR : exception renames IO-EXCEPTIONS.DATA_ERROR;

private

type FILE TYPE is new BASICIOTYPES.FILE TYPE;

end DIRECT 10;

F-15

OOC International A/S

Sun-3/SunOS - User's Guide

F.8.5 Specification of the Package TextIO

with BASIC 10 TYPES;
with IO EXCEPTIONS;
package TEXT IO is

type FILE TYPE is limited private;

type FILEMODE is (INFILE, OUT FILE);

type COUNT is range 0 .. INTEGER'LAST;
subtype POSITIVECOUNT is COUNT range 1 .. COUNT'LAST;
UNBOUNDED: constant COUNT:= 0; -- line and page length

subtype FIELD is INTEGER range 0 .. 35;

subtype NUMBER BASE is INTEGER range 2 .. 16;

type TYPESET is (LOWER_CASE, UPPERCASE);

-- File Management

procedure CREATE (FILE : in out FILETYPE;
MODE : in FILE MODE := OUTFILE;
NAME : in STRING := "";
FORM : in STRING := "");

procedure OPEN (FILE : in out FILE TYPE;
MODE : in FILEMODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILETYPE);
procedure DELETE (FILE : in out FILETYPE);
procedure RESET (FILE : in out FILE TYPE;

MODE : in FILE-MODE);
procedure RESET (FILE : in out FILETYPE);

function MODE (FILE : in FILE TYPE) return FILE MODE;
function NAME (FILE : in FILETYPE) return STRING;
function FORM (FILE : in FILE TYPE) return STRING;

function ISOPEN(FILE : in FILE-TYPE) return BOOLEAN;

-- Control of default input and output files

procedure SET INPUT (FILE : in FILETYPE);
procedure SET OUTPUT (FILE : in FILETYPE);

function STANDARD INPUT return FILE TYPE;
function STANDARD OUTPUT return FILE TYPE;

F-16

DOC Internationai A/S

Sun-3/SunOS - User's Guide

function CURRENT INPUT return FILE TYPE;
function CURRENTOUTPUT return FILE-TYPE;

-- specification of line and page lengths

procedure SETLINE LENGTH (FILE : in FILE TYPE;
TO : in COUNT);

procedure SETLINELENGTH (TO : in COUNT);

procedure SETPAGELENGTH (FILE : in FILETYPE;
TO : in COUNT);

procedure SETPAGELENGTH (TO : in COUNT);

function LINE LENGTH (FILE : in FILE TYPE) return
COUNT;

function LINELENGTH return
COUNT;

function PAGELENGTH (FILE : in FILETYPE) return
COUNT;

function PAGELENGTH return
COUNT;

-- Column, Line, and Page Control

procedure NEWLINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT := 1);

procedure NEWLINE (SPACING : in POSITIVECOUNT := 1);

procedure SKIPLINE (FILE : in FILE TYPE;
SPACING : in POSITIVE COUNT := 1);

procedure SKIPLINE (SPACING : in POSITIVECOUNT := 1);

function ENDOFLINE (FILE : in FILE TYPE) return
BOOLEAN;

function ENDOFLINE return
BOOLEAN;

procedure NEW PAGE (FILE : in FILETYPE);
procedure NEW-PAGE

procedure SKIP PAGE (FILE : in FILETYPE);
procedure SKIP-PAGE

function ENDOF PAGE (FILE : in FILE TYPE) return
BOOLEAN;

function ENDOFPAGE return
BOOLEAN;

function ENDOF FILE (FILE : in FILETYPE) return
BOOLEAN;

F-17

OOC Intemationai A/S

Sun-3/SunOS - User's Guide

function ENDOFFILE return
BOOLEAN;

procedure SETCOL (FILE : in FILETYPE;
TO : in POSITIVECOUNT);

procedure SETCOL (TO : in POSITIVE-COUNT);

procedure SETLINE (FILE : in FILE TYPE;
TO : in POSITIVE COUNT);

procedure SETLINE (TO : in POSITIVECOUNT);

function COL (FILE : in FILE TYPE) return
POSITIVE-COUNT;

function COL return
POSITIVECOUNT;

function LINE (FILE : in FILE TYPE) return
POSITIVE-COUNT;

function LINE return
POSITIVE COUNT;

function PAGE (FILE : in FILETYPE) return
POSITIVE COUNT;

function PAGE return
POSITIVE COUNT;

-- Character Input-Output

procedure GET (FILE : in FILE TYPE;
ITEM : out CHAACTER);

procedure GET (ITEM : out CHARACTER);
procedure PUT (FILE : in FILE TYPE;

ITEM : in CHARACTER);
procedure PUT (ITEM : in CHARACTER);

-- String Input-Output

procedure GET (FILE : in FILE TYPE;
ITEM : out STRING);

procedure GET (ITEM : out STRING);
procedure PUT (FILE : in FILE TYPE;

ITEM : in STRING);
procedure PUT (ITEM : in STRING);

procedure GETLINE (FILE : in rILETYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GETLINE (ITEM : out STRING;
LAST : out NATURAL);

procedure PUTLINE (FILE : in FILE TYPE;
ITEM : in STRING);

procedure PUTLINE (ITEM : in STRING);

F-18

ODC Intwmationai A/S

Sun-3/SunOS - User's Guide

-- Generic Package for Input-Output of Integer Types

generic
type NUM is range <>;

package INTEGER 10 is

DEFAULT WIDTH : FIELD :m NUM'WIDTE;
DEFAULT-BASE : NUMBER-BASE : 10;

procedure GET (FILE : in FILETYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
WIDTH : in FIELD := DEFAULT WIDTH;
BASE : in NUMBER BASE := DEFAULT BASE);

procedure PUT (ITEM : in NUM;
WIDTH : in FIELD := DEFAULT WIDTH;
BASE : in NUMBER BASE := DEFAULTBASE);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO out STRING;
ITEM : in NUM;
BASE : in NUMBERBASE :=

DEFAULT BASE);

end INTEGER 10;

F-19

OOC International A/S

Sun-3/SunOS - User's Guide

-- Generic Packages for Input-Output of Real Types

generic
type NUm is digits <>;

package FLOAT I is

DEFAULT FORE : FIELD :=2;
DEFAULT -AFT : FIELD := NUM'digits - 1;
DEFAULTEXP : FIELD :u 3;

procedure GET (FILE : in FILE TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAULT FORE;
AFT : in FIELD := DEFAULT AFT;
EXP : in FIELD :u DEFAULT EXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD := DEFAULT FORE;
AFT : in FIELD := DEFAULT-AFT;
EXP : in FIELD := DEFAULT EXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure Pt% (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD :2 DEFAULTAFT;
EXP : in FIELD := DEFAULT EXP);

end FLOAT IO;

F-20

DOC Interationai Ao S

Appendix F

Sun-3/SunOS - User's Guide

generic
type NUM is delta <>;

package FIXED_10 is

DEFAULT FORE : FIELD :- NUM'FORE;
DEFAULT AFT : FIELD :- NUM'AFT;
DEFAULT-EXP : FIELD :- 0;

procedure GET (FILE : in FILETYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET (ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure PUT (FILE : in FILE TYPE;
ITEM : in NUM;
FORE : in FIELD :D DEFAULT FORE;
AFT : in FIELD := DEFAULTAFT;
EXP : in FIELD := DEFAULT EXP);

procedure PUT (ITEM : in NUM;
FORE : in FIELD :2 DEFAULT FORE;
AFT : in FIELD :2 DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

procedure GET (FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in NUM;
AFT : in FIELD :2 DEFAULT AFT;
EXP : in FIELD := DEFAULTEXP);

end FIXEDI0;

-- Generic Package for Input-Output of Enumeraticn Types

F-21

OC Internationai A/S

Sun-3/SunOS - User's Guide

generic
type ENUM is (<>);

package ENUMERATION_10 is

DEFAULT WIDTH : FIELD := 0;
DEFAULT SETTING : TYPE-SET :- UPPER CASE;

procedure GET (FILE : in FILE TYPE;
ITEM : out ENUM);

procedure GET (ITEM : out ENUM);

procedure PUT (FILE : in FILE TYPE;
ITEM : in ENUM;
WIDTH : in FIELD :2 DEFAULT WIDTH;
SET : in TYPE_SET := DEFAULT SETTING);

procedure PUT (ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT WIDTH;
SET : in TYPESET := DEFAULT SETTING);

procedure GET (FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT (TO : out STRING;
ITEM : in ENUM;
SET : in TYPESET := DEFAULT SETTING);

end ENUMERATION_I ;

-- Exceptions

STATUS ERROR : exception renames 10 EXCEPTIONS.STATUS ERROR;
MODE ERROR : exception renames IO-EXCEPTIONS.MODE ERROR;
NAME-ERROR : exception renames 10-EXCEPTIONS.NAME-ERROR;
USE ERROR : exception renames 10-EXCEPTIONS.USE ERROR;
DEVICE ERROR : exception renames IO-EXCEPTIONS.DEVICE ERROR;
END ERROR : exception renames IO-EXCEPTIONS.END ERROR;
DATAERROR : exception renames IO EXCEPTIONS.DATA ERROR;
LAYOUT ERROR : exception renames IOEXCEPTIONS.LAYOUTERROR;

private

type FILETYPE is new BASIC IO TYPES.FILE TYPE;

end TEXTIC;

F.8.6 Low Level Input-Output

The package LOWLEVEL 10 is empty.

F-22

DOC Internationai A/S

APPENDIX C

TST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .TST
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

$BIG_IDl 1..125 -> 'A', 126 -> '1'
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID2 1..125 -> 'A', 126 -> '2'
Identifier the size of the
maximum input line length with
varying last character.

$BIG_ID3 1..63 -> 'A', 64 -> '3',
Identifier the size of the 65..126 -> 'A'
maximum input line length with
varying middle character.

$BIG_ID4 1..63 -> 'A', 64-> '4',
Identifier the size of the 65..126 -> 'A'
maximum input line length with
varying middle character.

$BIG_INTLIT 1..123 -> 0, 124..126 -> 298
An integer literal of value 298'
with enough leading zeroes so
that it is the size of the
maximum line length.

$BIG_REALLIT 1..121 -> 0, 122..126 -> 690.0
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the

C-I

maximum line length.

$BIG STRINGI 1..63 -> 'A'

A string literal which when
catenated with BIGSTRING2
yields the image of BIGIDI.

$BIG STRING2 l..62 -> 'A', 63 -> 'i'
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGIDl.

$BLANKS 1..106 ->

A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNTLAST 2_147_483_647
A universal integer
literal whose value is
TEXTIO.COUNT'LAST.

$DEFAULTMEMSIZE 2_097 152
An integer literal whose value
is SYSTEM.MEMORYSIZE.

$DEFAULTSTOR_1UNIT 16
An integer literal whose value
is SYSTEM.STORAGEUNIT.

$DEFAULTSYS NAME SUN
The value of the constant
SYSTEM.SYSTEMNAME.

$DELTA DOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

$FIELD_LAST 35
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXED_NAME NOSUCHTYPE
The name of a predefined
fixed-point type other than

DURATION.

$FLOAT_NAME NOSUCHTYPE
The name of a predefined
floating-point type other than

C-2

FLOAT, SHORTFLOAT, or
LONGFLOAT.

$GREA£ERTHAN_D URATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATION-BASE LAST 200000.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH_PRIORITY 31
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAMEl ILLEGAL!@#$%^/ILLEGAL
An external file name which
contains invalid characters.

$ILLEGALEXTERNAIFILENAME2 ILLEGAL&()+-/ILLEGAL
An external file name which
is too long.

$INTEGERFIRST -2147483648
A universal integer literal
whose *value is INTEGER'FIRST.

$INTEGERLAST 2147483647
A universal integer literal
whose value is INTEGER'LAST.

$INTEGERLASTPLUS_1 2147483_648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS_THANDURATION -100000.0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESSTHANDURATION BASEFIRST -200000.0
A universal real literal that is
less than DURATION'BASE'FIRST.

$LOWPRIORITY
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

C-3

$MANTISSADOC 31
An integer literal whose value
is SYSTEM.MAXMANTISSA.

SMAXDIGITS 15
Maximum digits supported for
floating-point types.

$MAXINLEN 126
Maximum input line length
permitted by the implementation.

$MAXINT 2147483647
A universal integer literal
whose value is SYSTEM.MAXINT.

$MAXINTPLUS_1 2147483648
A universal integer literal
whose value is SYSTEM.MAXINT+I.

$MAXLENINTBASEDLITERAL 1..2 -> '2:', 3..123 -> '0'
A universal integer based 124..126 -> '11:'
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAXINLEN
long.

$MAXLENREALBASEDLITERAL l..3 -> '16:', 4..122 -> '0',
A universal real based literal 123..126 -> 'F.E:'
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

$MAXSTRING LITERAL I -> .., 2..125 -> 'A',
A string literal of size 126 ->
MAX IN LEN, including the quote
characters.

$MININT -2147483648
A universal integer literal
whose value is SYSTEM.MININT.

$MIN_TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME NOSUCHTYPE

C-4

A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT_FLOAT, SHORTINTEGER,
LONGFLOAT, or LONGINTEGER.

$NAME_LIST LYNWOODUNIXV
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEGBASEDINT 16#FFFFFFFF#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

$NEWMEMSIZE 2_097_152
An integer literal whose value
is a permitted argument for
pragma memorysize, other than
$DEFAULTMEMSIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

$NEWSTOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma storage-unit, other than
$DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGEUNIT.

$NEWSYS NAME IAPX386_PM
A value of the type SYSTEM.NAME,
other than $DEFAULT SYSNAME. If
there is only one value of that
type, then use that value.

$TASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one inout
parameter.

STICK 1.0
A real literal whose value is
SYSTEM.TICK.

C-5

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to
the Ada Standard. The following 44 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form AI-ddddd is to an Ada Commentary.

A39005G
This test unreasonably expects a component clause to pack an array
component into a minimum size (line 30).

B97102E
This test contains an unintended illegality: a select statement
contains a null statement at the place of a selective wait alternative

(line 31).

C97116A
This test contains race conditions, and it assumes that guards are
evaluated indivisibly. A conforming implementation may use interleaved
execution in such a way that the evaluation of the guards at lines 50 &
54 and the execution of task CHANGING OF THE GUARD results in a call to
REPORT.FAILED at one of lines 52 or 56.

BC3009B
This test wrongly expects that circular instantiations will be detected
in several compilation units even though none of the units is illegal
with respect to the units it depends on; by AI-00256, the illegality

need not be detected until execution is attempted (line 95).

CD2A62D

This test wrongly requires that an array object's size be no greater
than 10 although its subtype's size was specified to be 40 (line 137).

CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests]
These tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them to a
derived subprogram (which implicitly converts them to the parent type
(Ada standard 3.4:14)).. Additionally, they use the 'SIZE length clause
and attribute, whose interpretation is considered problematic by the WG9
ARG.

CD2A81G, CD2A83G, CD2A84M & N, & CD50110
These tests assume that dependent tasks will terminate while the main
program executes a loop that simply tests for task termination; this is
not the case, and the main program may loop indefinitely (lines 74, 85,
86 & 96, 86 & 96, and 58, resp.).

D-1

CD2Bl5C & CD7205C
These tests expect that a 'STORAGESIZE length clause provides precise
control over the number of designated objects in a collection; the Ada
standard 13.2:15 allows that such control must not be expected.

CD2DllB
This test gives a SMALL representation clause for a derived fixed-point
type (at line 30) that defines a set of model numbers that are not
necessarily represented in the parent type; by Commentary AI-00099, all
model numbers of a derived fixed-point type must be representable values
of the parent type.

CD5007B
This test wrongly expects an implicitly declared subprogram to be at the
address that is specified for an unrelated subprogram (line 303).

ED7004B, ED7005C & D, ED7006C & D [5 tests]
These tests check various aspects of the use of the three SYSTEM
pragmas; the AVO withdraws these tests as being inappropriate for
validation.

CD71O5A
This test requires that successive calls to CALENDAR.CLOCK change by at
least SYSTEM.TICK; however, by Commentary AI-00201, it is only the
expected frequency of change that must be at least SYSTEM.TICK --
particular instances of change may be less (line 29).

CD7203B, & CD7204B
These tests use the 'SIZE length clause and attribute, whose
interpretation is considered problematic by the WG9 ARG.

CD7205D
This test checks an invalid test objective: it treats the specification
of storage to be reserved for a task's activation as though it were like
the specification of storage for a collection.

CE2107I
This test requires that objects of two similar scalar types be
distinguished when read from a file--DATA ERROR is expected to be raised
I)y an attempt to read one object as of the other type. However, it is
not clear exactly how the Ada standard 14.2.4:4 is to be interpreted;
thus, this test objective is not considered valid. (line 90)

CE3111C
This test requires certain behavior, when two files are associated with
the same external file, that is not required by the Ada standard.

CE3301A
This test contains several calls to ENDOFLINE & ENDOFPAGE that have
no parameter: these calls were intended to specify a file, not to refer
to STANDARDINPUT (lines 103, 107, 118, 132, & 136).

D-2

CE3411B
This test requires that a text file's column number be set to COUNT'LAST
in order to check that LAYOUTERROR is raised by a subsequent PUT
operation. But the former operation will generally raise an exception
due to a lack of available disk space, and the test would thus encumber
validation testing.

E28005C
This test expects that the string "-- TOP OF PAGE. --63" of line 204
will appear at the top of the listing page due to a pragma PAGE in line
203; but line 203 contains text that follows the pragma, and it is this
that must appear at the top of the page.

D-3

APPENDIX E

COMPILER OPTIONS AS SUPPLIED BY

DDC-I, Inc

Compiler: DACS for Sun-3 -> Lynwood/LynX, Version
4.4 (1.1)

ACVC Version: 1.10

OPTION EFFECT

E-1

- 26 -

Sun-3/SunOS - User's Guide
The Ada Compiler

5 The Ada Compiler

The Ada Compiler is invoked by specifying a call of the program
Ada to the shell The invocation command is described in
Section 5.1. 4'jt C.4

If any diagnostic messages are produced during the compilation,
they are output on the diagnostic file and on the standard out-
put. The diagnostic file and the diagnostic messages are
described in Sections 5.1.3 and 5.3.5.

The user may request additional listings to be output on a list
file by specifying options in the compiler invocation. The
list file and the listings are described in Sections 5.1.2 and
5.3.

The compiler uses a program library during the compilation.
The compilation unit may refer to units from the program
library, and an internal representation of the compilation unit
will be stored in the program library as a result of a success-
ful compilation. The program library is described in Chapter
3. Section 5.4 briefly describes how the Ada compiler uses the
library.

5.1 The Invocation Command

The invocation command has the following syntax:

ada <source-file-name> C<source-file-name>]

Options

-L. Causes the compiler to produce a formatted
-I listing of the input source. The listing is

written on the list file. Section 5.3.2 con-
tains a description of the source listing.
The default is no list file, in which case no
source listing is produced, regardless of any
LIST pragmas in the program or any diagnostic
messages produced.

-x Causes the compiler to produce a cross-
reference listing. If this option is given
and no severe or fatal errors are found during
the compilation, the cross-reference listing
will be written on the list file. The cross-
reference listing is described in Section
5.3.4. The default excludes cross-reference.

- 27 -

Sun-3/SunOS - User's Guide
The Ada Compiler

-p Progress-report.

-a <libspec> Specifies the current sublibrary, and there-
fore the program library.. If this option is
omitted the sublibrary designated by the en-
vironment variable ADA LIBRARY is used. If
the variable does not exist the file
ADA LIBRARY is used. Section 5.4 describes how
the Ada compiler uses the library.

-c <filename> Specifies the configuration file to be used by
the compiler in the current compilation. If
this option is omitted the configuration file
(config) in the compiler directory is used.

-s Specifies that the source text is not to be
-S saved in the program library. This saves some

space in the sublibrary. The default is to
save source text. In this way, the user is al-
ways certain what version of the source text
was compiled. The source text may be displayed
from the sublibrary with the PLU Type command.

-B Build standard. Pseudo compilation of package
standard. This option is intended for main-
tenance purposes only.

-n No check. Suppress all run-time checks. By
default, all run-time checks are generated.

-N <keyword> (,<keyword>]
Toggle check. Selective suppress of run-time
checks. If a check is suppressed, the option
will enable the check. If a check is enabled,
the option will suppress the check. The fol-
lowing keywords are allowed:

- access
- index
- discriminant
- range
- length
- elaboration
- storage

Keywords are case-insensitive and can be ab-
breviated such that the abbreviation is
unique.

- 28 -

Sun-3/SunOS - User's Guide
The Ada Compiler

-o Optimize. Optimize the program with respect to
execution time, which, under normal cir-
cumstances, also is optimization with respect
to size of the executable.

-O <keyword> C,<keyword>)
Toggle optimization. The correspondence be-
tween keywords and optimization is as follows:

Keyword Optimization

Block Optimize block and call frames.
Peep Peephole optimization.
Cse Common subexpressions elimination.
Reordering Optimize aggregates and procedure

calls.
Stackheight Minimize stack height.
Fct2proc Change functions to procedures.

The keywords are case-insensitive and can be ab-
breviated such that the abbrivation is unique.

-u <unit number> Specifies that the compilation unit being com-
piled is assigned the unit number
<unit number> in the current sublibrary (see
section 3.2.2 for explanation of unit
numbers). This option will only work for:

- compilations containing a single compilation
unit which is neither a subunit nor contains
subunit stubs,

- unit numbers which are unused and follow the
formula <unit number> div 4096 =

<sublibrarylevel number> where div is in-
teger division and <sublibrarylevelnumber>
is counted from the root to the current sub-
library by assigning the root the level
number: 0 (zero). Thus legal unit numbers
for the root sublibrary are 0...4095, for a
child sublibrary of the root: 4096...8191
and so on.

Parameters

The <source-file-name> specifies the file containing the source
texts to be compiled. A source file is expected to have the
string *.ada" as the last four characters of its name. If the
last part of the name does not contain ".", the string ".ada"

- 29 -

Sun-3/SunOS - User's Guide
The Ada Compiler

is appended to the name. More than one file name must be
specified.

5.1.1 The List File

The name of the list file is identical to the name of the
source file except that the final characters ".ada" are re-
placed by ".lis". The list file will be placed in the current
directory. The contents of the list file are de3cribed in
Section 5.3.

5.1.2 The Diagnostic File

The name of the diagnostic file is identical to the name of the
source file except that the final characters ".ada" are re-
placed by ".err". The diagnostic file will be placed in the
invoker's current directory.

The diagnostic file is a file containing a list of diagnostic
messages, each followed by a line showing the number of the
line in the source that caused the message to be generated, and
then by a blank line. The file is not separated into pages and
there are no headings.

5.1.3 The Configuration File

Certain functional characteristics of the compiler may be
modified by the user. These characteristics are passed to the
compiler by means of a configuration file, which is a text
file. The contents of the configuration file must be an Ada
positional aggregate, written on one line, of the type
CONFIGURATION RECORD, which is described below. The con-
figuration file is not accepted by the compiler in the follow-
ing cases:

- The syntax does conform with the syntax for positional Ada
aggregates.

- A value is outside the ranges specified below.

- A value is not specified as a literal.

- LINES PER PAGE is not greater than TOPMARGIN +
BOTTOM MARGIN.

- The aggregate occupies more than one line.

